Blue Gene

Blue Gene is a computer architecture project designed to produce several next-generation supercomputers, designed to reach operating speeds in the petaflops range, and currently reaching sustained speeds over 360 teraflops. It is a cooperative project among IBM (particularly the Thomas J. Watson Research Center), the Lawrence Livermore Nationa Laboratory, the United States Department of Energy (which is partially funding the project), and academia. There are four Blue Gene projects in development: BlueGene/L, BlueGene/C, BlueGene/P, and BlueGene/Q.

The first computer in the Blue Gene series, Blue Gene/L, developed through a partnership with Lawrence Livermore National Laboratory (LLNL), has a theoretical peak performance of 360 TFLOPS, and scores over 280 TFLOPS sustained on the Linpack benchmark.

A note on Nomenclature: The term BlueGene/L sometimes refers to the computer installed at LLNL, and sometimes refers to the architecture of that computer. As of November 2006, there are 27 computers on the Top500 list using the Blue Gene/L architecture. All these computers are listed as having an architecture of eServer Blue Gene Solution.

History

In December 1999, IBM announced $100 million research initiative of a five-year effort to build a massively parallel computer, to be applied to the study of biomolecular phenomena such as protein folding. The project has two main goals: to advance our understanding of the mechanisms behind protein folding via large-scale simulation, and to explore novel ideas in massively parallel machine architecture and software. This project should enable biomolecular simulations that are orders of magnitude larger than current technology permits. Major areas of investigation include: how to use this novel platform to effectively meet its scientific goals, how to make such massively parallel machines more usable, and how to achieve performance targets at a reasonable cost, through novel machine architectures.

In November 2001, Lawrence Livermore National Laboratory joined IBM as a research partner for Blue Gene.

On September 29, 2004, IBM announced that a Blue Gene/L prototype at IBM Rochester (Minnesota) had overtaken NEC's Earth Simulator as the fastest computer in the world, with a speed of 36.01 TFLOPS on the Linpack benchmark, beating Earth Simulator's 35.86 TFLOPS. This was achieved with an 8-cabinet system, with each cabinet holding 1,024 compute nodes. Upon doubling this configuration to 16 cabinets, the machine reached a speed of 70.72 TFLOPS by November 2004 , taking first place in the Top500 list.

On March 24, 2005, the US Department of Energy announced that the Blue Gene/L installation at LLNL broke its speed record, reaching 135.5 TFLOPS. This feat was possible because of doubling the number of cabinets to 32.

On the June 2006 Top500 list, Blue Gene/L installations across several sites world-wide took 3 out of the 10 top positions, and 13 out of the top 64. Three racks of BlueGene/L are housed at the San Diego Supercomputer Center and are available for academic research.

On October 27, 2005, LLNL and IBM announced that Blue Gene/L had once again broken its speed record, reaching 280.6 TFLOPS on Linpack, upon reaching its final configuration of 65,536 "Compute Nodes" (i.e., 216 nodes) and an additional 1024 "IO nodes" in 64 air-cooled cabinets.

BlueGene/L is also the first supercomputer ever to run over 100 TFLOPS sustained on a real world application, namely a three-dimensional molecular dynamics code (ddcMD), simulating solidification (nucleation and growth processes) of molten metal under high pressure and temperature conditions. This won the 2005 Gordon Bell Prize.

On June 22, 2006, NNSA and IBM announced that Blue Gene/L has achieved 207.3 TFLOPS on a quantum chemical application (Qbox).

On Nov 14, 2006, at Supercomputing 2006 SC06, Blue Gene/L has been awarded the winning prize in all HPC Challenge Classes of awards.

On Apr 27, 2007, a team from the IBM Almaden Research Lab and the University of Nevada ran a simulation of half a mouse brain for ten seconds.

Blue Gene/P

On June 26, 2007, IBM unveiled Blue Gene/P, the second generation of the Blue Gene supercomputer. Designed to run continuously at one petaflops, it can be configured to reach speeds in excess of three petaflops. Furthermore, it is at least seven times more energy efficient than any other supercomputer, accomplished by using many small, low-power chips connected through five specialized networks. Four 850 MHz PowerPC 450 processors are integrated on each Blue Gene/P chip. The one-petaflops Blue Gene/P configuration is a 294,912-processor, 72-rack system harnessed to a high-speed, optical network. Blue Gene/P can be scaled to an 884,736-processor, 216-rack cluster to achieve three-petaflops performance. A standard Blue Gene/P configuration will house 4,096 processors per rack. The first laboratory to receive the Blue Gene/P will be Argonne National Laboratory. The first racks of the Blue Gene/P will be shipped in fall 2007. The first installment will be a 111-teraflop system, which has approximately 32,000 processors, will be operational for the national community in spring 2008.

Blue Gene/Q

The last known supercomputer in the Blue Gene series, Blue Gene/Q is aimed to reach 10 petaflops in the 2010-2012 time frame. It will continue to expand and enhance the Blue Gene/L and /P architectures with higher frequency at similar performance/watt. Blue Gene/Q will have a similar number of nodes but many more cores per node.

Reference: http://www.yoolk.my/Computers/

No comments: